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In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State.
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Major Themes from Lattice

In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State.

Understand what happens
to HRG picture at finite
µB .

Bracket the position of
CEP in phase diagram.

Understand the critical
behavior due to the light
quarks in the crossover
region.
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Basic observables

One of the methods to circumvent sign problem at finite µ:
Taylor expansion of physical observables around µ = 0 in powers of
µ/T .
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The series for χB
2 should diverge at the critical point. On finite lattice

χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]
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The series for χB
2 should diverge at the critical point. On finite lattice

χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]

Current status:
χB
8 for Nτ = 8 pure staggered fermions[Gavai& Gupta, 08].

χB
6 for Nτ = 6, 8, 12, 16 HISQ fermions

[BNL-Bielefeld-CCNU Collaboration, HotQCD Collaboration, 16].
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χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]

Current status:
χB
8 for Nτ = 8 pure staggered fermions[Gavai& Gupta, 08].

χB
6 for Nτ = 6, 8, 12, 16 HISQ fermions

[BNL-Bielefeld-CCNU Collaboration, HotQCD Collaboration, 16].

These observables imp. for EoS → χB
6 can already constrain QCD

pressure in the regime approximated by Hadron Resonance gas model.
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Challenges for Lattice computations

The Baryon no. susceptibilities can be expressed in terms of Quark
no. susceptibilities (QNS).
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s D

′

s)〉.
Higher derivatives → more inversions
Inversion is the most expensive step on the lattice !

Extending to higher orders?

• Matrix inversions increasing with the order
• Delicate cancellation between a large number of terms for higher order

QNS.
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Progress made in the last year

A new method of lattice calculations of χ at finite µ developed
[Gavai & Sharma, 14]
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Progress made in the last year

A new method of lattice calculations of χ at finite µ developed
[Gavai & Sharma, 14]

No. of inversions significantly reduced for 6th and higher orders.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.

Calculating explicitly the lowest eigenvalues improves performance of
the fermion inverter. Optimized codes developed to this end.

Efficient codes based on modern computer architectures are being
developed. [O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, 14]
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Constraining EoS

In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including χB

6 term already reproduces P(µB) within 5%
accuracy.
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Constraining EoS

In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including χB

6 term already reproduces P(µB) within 5%
accuracy.

We are improving the errors on χB
6 → increase statistics twofold this year.
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EoS away from criticality

The pressure for T > 160 MeV already constrained by χ6
B for

µB/T ≤ 2 → input for hydrodynamic modeling of QGP.
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EoS away from criticality

The pressure for T > 160 MeV already constrained by χ6
B for

µB/T ≤ 2 → input for hydrodynamic modeling of QGP.

Extension to µB/T ∼ 3 is in progress.
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The fluctuations near Tc

P(T , µB)− P(T , 0)
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Strangeness neutrality condition:
np

np+nn
= 0.4.

Clear deviation from HRG predictions!
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Is this deviation consistent with the trend from Lattice?

SBσ
3
B

MB

=
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2
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4

+
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[
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.

R
B
31 = R

B,0
31 + R

B,2
31

(

MB

σ2
B

)2

. [Karsch et. al., arxiv:1512.06987]

Experimental data consistent with QCD prediction. Caveat nP 6= nB !
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More Observables?

NLO κBσ
2
B for µQ ∼ µS ∼ 0 : R

B,2
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1

2

[

χB
6

χB
2

−
(

χB
2

χB
4

)2
]

= 3RB,2
31 .

Fit to experimental data shows these quantities are closely related.
R

B,0
31 ≈ R

B,0
42 . At NLO consistent within large errors in the data. [

Bielefeld-BNL-CCNU collaboration, In preparation, 16]
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NLO correction

The errors for RB,2
31 not completely under control. Fit to the data

consistent with LQCD predictions at present.
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NLO correction

The errors for RB,2
31 not completely under control. Fit to the data

consistent with LQCD predictions at present.

Aiming for a factor two reduction of errors on 6th order cumulants
near Tc .
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Freezeout curve: Input from lattice

Freezeout curve parametrized as T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).
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Freezeout curve: Input from lattice

Freezeout curve parametrized as T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).

Basic observables ΣQB
r =

RQ
12

RB
12

, RX
12 =

χ
X
1

χ
X
2
.
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Freezeout curve: Input from lattice

Freezeout curve parametrized as T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).

Basic observables ΣQB
r =

RQ
12

RB
12

, RX
12 =

χ
X
1

χ
X
2
.

Expanding the observable about the freezeout surface at µB = 0,

ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r

dT
|Tf ,0

]

µ
2
B

T 2 .
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Freezeout curve: Input from lattice

Freezeout curve parametrized as T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).

Basic observables ΣQB
r =

RQ
12

RB
12

, RX
12 =

χ
X
1

χ
X
2
.

Expanding the observable about the freezeout surface at µB = 0,

ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r

dT
|Tf ,0

]

µ
2
B

T 2 .

Instead from experimental parametrization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.
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ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
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dT
|Tf ,0

]

µ
2
B

T 2 .

Instead from experimental parametrization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.

As a result ΣQB
r (µB) = ΣQB

r (0)
[

1 + c12

(

RB
12

)2
]

+O
(

RB
12

)4
.
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r − κf2 Tf ,0
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|Tf ,0

]

µ
2
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T 2 .

Instead from experimental parametrization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.

As a result ΣQB
r (µB) = ΣQB

r (0)
[

1 + c12

(

RB
12

)2
]

+O
(

RB
12

)4
.

An estimate of ΣQB
r and RB

12 from experiments allows us to calculate
c12. [ Bielefeld-BNL-CCNU collaboration, 15]
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Caveat: In experiments one measures protons ΣQp
r , R

p
12. Need to

understand proton vs baryon number distributions. [ Asakawa & Kitazawa, 12].
Within HRG at least RB

12 is mimicked by RP
12 within 10%.

Additionally take into account also corrections due to finite range of
momenta of detected particles.
[ Karsch, Morita and Redlich, 15, P Garg et. al., 13, Bzdak & Koch, 12].

From the 2 independent expressions of ΣQB
r we extract

c12(Tf ,0, κ
f
2) = c12(Tf ,0)− κf

2D12.
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s1/2NN [GeV]

(MQ/σQ2 )/(MP/σP2 )

(MP/σP2)2

QCD:      (Tf,0, κf2=0)
(Tf,0,κf2=0.02)

STAR: ptmax=2.0 GeV
ptmax=0.8 GeV

PHENIX/STAR2.0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

200 62.4 39 27 19.6 11.5  7.7

This excercise give Tf ,0 = 147 MeV consistent with expectation that its at
or below Tc .
Curvature: κf

2 < −0.012(15)→ near to chiral curvature κB
2 = 0.0066(7).

[ Bielefeld-BNL-CCNU collaboration, 15]
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Breakdown of HRG

Breakdown of HRG+ onset of criticality can be already constrained with χB
6 .

Near critical point all terms in the Taylor expansion nearly equal → need to
improve the errors to observe!

At CEP: χn > 0, κBσ
2
B > 1
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Critical-end point search from Lattice

Radius of convergence: r2n ≡
√

2n(2n− 1)
∣

∣

∣

χ
B
2n

χ
B
2n+2

∣

∣

∣
.

Only existing result TCEP = 0.94Tc µ/T = 1.68(5)
[ S.Datta, R. Gavai, S.Gupta, 13, Mumbai group]

Lowest rn=2 varies significantly from our estimates and HRG → lattice
cut-off effects needs to be considered!
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Critical-end point search from Lattice

Current errors on our χB
6 /χ

B
4 only allow us to define a favored region for

CEP!

χB
8 measured to get errors bounds on radius of convergence estimates.

Connection to experiments non-trivial due to non-equilibrium effects.
[ S. Mukherjee, Y. Yin, R. Venugopalan, 15]
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Outlook

[P
(T

,µ
B
)−

P
(T
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)]

/T4
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Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For µB/T < 2 → √

sNN ≥ 20 GeV already under control.
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χB
6 measured with improved precision: progress towards constraining EoS for

µB/T ∼ 3.
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6 measured with improved precision: progress towards constraining EoS for

µB/T ∼ 3.

Analysis of χB
8 ongoing. Crucial to estimate the errors on the EoS measured

with the sixth order cumulants.
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Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For µB/T < 2 → √

sNN ≥ 20 GeV already under control.

χB
6 measured with improved precision: progress towards constraining EoS for

µB/T ∼ 3.

Analysis of χB
8 ongoing. Crucial to estimate the errors on the EoS measured

with the sixth order cumulants.

Higher order cumulants will also help in bracketing the possible CEP. Current
LQCD data suggest it is µB/T ≤ 2 but a larger value cannot be ruled out.
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